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Abstract 

The Bubnov-Galerkin method was applied to the problem of onset of convection in a horizontally infinite liquid layer 
set between two blocks with different thermal conductivities and thicknesses. The critical Rayleigh number (Ra,) and 
wavenumber (kc) were determined for a range of conductivities and thicknesses. Computations, based on the finite 
element method, for the steady conductive regime (motionless liquid) suggest that lateral walls, with different thermal 
admittances appropriate to a finite vessel, have no appreciable effect on Ra, and k, when the aspect ratio is larger than 
two. Values calculated from the theoretical model are in reasonable agreement with experimental results. 0 1998 
Elsevier Science Ltd. All rights reserved. 

Nomenclature 
d depth of the liquid layer 
d, thickness of the limiting horizontal plate i 
D differential operator d/dz 
g gravity 
k wavenumber 
r, = A/A, ratio of th.ermal conductivities 
Rn Rayleigh number 
T,,, mean temperature of the liquid 

I-CC temperature of the atmosphere 
TZL thermal influence length 
V velocity perturbation 
VE, vessel made of material i 
U, u, w velocity components in x, y, z directions 
x, y, z spatial Cartesian coordinates. 

Greek symbols 
c( coefficient of thermal expansion of the liquid 
T, aspect ratio of the vessel in the i direction 
6, = d,ld ratio of thickness 
6T temperature difference between the limiting hori- 
zontal surfaces 
A Laplacian operator 
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temperature perturbation 
thermal diffusion of the liquid 
thermal conductivity of the liquid 
thermal conductivity of the horizontal boundary i 

kinematic viscosity of the liquid. 

Subscripts 
c critical value 
I lower surface 
m mean 
u upper surface. 

1. Introduction 

During the last decades the BCnard problem has 
received great attention as the canonical example of a 
dissipative structure exhibiting successively ordered, dis- 
ordered pattern and the phenomena of turbulence, with 
particular simplicity. 

In theoretical considerations, the most usual situation 
is that of a fluid layer, infinitely extended in the horizontal 
direction, but limited by two horizontal planes at fixed 
temperatures. Although the first experimental studies 
started with the turn of this century [I] and the theoretical 
ones a little later [2], the first really precise neutral stab- 
ility curves were proposed by Reid and Harris [3]. In 



3310 P. Cerisier et al./lnt. J. Heat Transjbr 41 (1998) 3309-3320 

the first calculations, the horizontal limiting surfaces are 
supposed perfect heat conductors at fixed temperatures. 
This condition is experimentally achieved when the fluid 
has a low thermal conductivity compared to that of hori- 
zontal limiting blocks. Such conditions occur for instance 
in a layer of water between copper plates. The con- 
ductivity ratio of copper and water lies in the order of 
500. In such conditions, the temperature disturbances 
vanish and the temperature of the boundaries remain 
uniform. For a laterally-infinite fluid layer confined 
between fixed horizontal boundaries of high thermal con- 
ductivity, the critical Rayleigh number for onset of con- 
vection is Ra, = 1708 [4]. These predictions have been 
verified in the laboratory [5]. 

But in many problems encountered in nature, indus- 
tries or laboratories, boundaries cannot be assumed to be 
good heat conductors. Therefore, more general boundary 
conditions for temperatures must be used. The tem- 
perature disturbances penetrate the walls. The heat flux 
and the temperatures obey the continuity equation on 
the boundaries. So it is necessary to consider the influence 
of the ratios ri = l/A, of thermal conductivity of the liquid 
to that of boundaries (i = U, 1 where u and 1 stand, respec- 
tively, for the upper and the lower blocks). Jeffreys [6] 
was the first to take into account the influence of r upon 
the critical Rayleigh number Ra,. An analysis was per- 
formed by Sani [7] and Sparrow et al. [8]. They studied 
the stability problem, in which the heat transfer on the 
boundaries satisfies a linear Fourier law. They integrate 
amplitude equations using power series; Ra, was deter- 
mined in a few cases as a function of the Biot number. 

Hurle et al. [9] considered the case of a horizontal 
liquid layer set between two semi-infinite walls of equal 
thermal conductivity, different from that of the fluid. 
Gershuni et al. [lo, 1 I] studied a more general case, but 
also less usual, in which the two semi-infinite walls have 
different thermal conductivities. They showed that the 
stability threshold is unchanged if the boundaries are 
interchanged and that an increase in thermal conductivity 
of the later involves a continuous increase in the critical 
Rayleigh number Ra, and the corresponding wave- 
number k,. When both boundaries have the same ther- 
mal conductivity, Ra, and k, vary from, respectively, 
720 and 0 to 1708 and 3.11, while the ratio of thermal 
conductivities decreases from infinity to zero. This vari- 
ation can be easily understood when considering that a 
temperature fluctuation occurring in the liquid, close to 
a high conducting limiting plane, easily relaxes, whereas 
it can persist and distort the temperature distribution 
when the plane is nearly insulating. This distortion can 
lead to an instability of the fluid. As a consequence, the 
temperature gradient is small and the convective heat 
transfer too. The fluid layer organizes a pattern with 
small wavenumber. 

All the theoretical works mentioned above were 
devoted to horizontal layers, infinitely extended in the 

horizontal direction, whereas experiments are necessarily 
performed in finite vessels, where mechanical and thermal 
effects of lateral walls are always present, at least close to 
each wall. The questions of interest are then the fol- 
lowing : what is the influence of the lateral walls, that of 
thermal properties and thicknesses of horizontal blocks 
of the vessel, on the value of the convective threshold? 

Several authors considered the influence of confine- 
ment, i.e., of the lateral walls. It seems that the first 
investigator who considered a fully confined fluid was 
Davis [ 12, 131. He chose perfectly conducting sidewalls 
in rectangular containers and used ‘finite rolls’ trial func- 
tions, with a Galerkin method which gives an upper limit 
for Ra,. (The finite rolls are defined as convective cells 
having only two non-zero velocity components depend- 
ing on the three spatial coordinates.) But this early theor- 
etical work, criticized by Catton [14], was subsequently 
corrected by Davies-Jones [ 151. He showed that, although 
the Davis finite rolls could not exist, they represent a 
good approximation of the true, three-dimensional sol- 
ution. The reason for this is that the Ra, problem is really 
a variation-problem to minimize a quadratic functional. 
Segel [16] used a multiple-scale perturbation analysis. 
Catton considered the case of a fluid confined above 
and below by rigid, perfectly conducting surfaces and 
laterally, by first perfectly conducting walls [14], then 
perfectly insulating [ 171 and finally arbitrary conducting 
ones [18]. Charlson and Sani [ 191 considered a finite 
cylindrical box, with good conducting top and bottom 
boundaries, whereas lateral walls were insulating or con- 
ducting. Qualitatively it can be concluded that lateral 
confinement is stabilizing for the fluid layer, but this effect 
is significant only for small aspect ratios (I, and I,, < 2). 
On the other hand, Ra, is significantly smaller for insu- 
lating sidewalls than for conducting ones, especially for 
small aspect ratios. This result can be explained by the 
fact that the presence of lateral walls requires more work 
from the fluid, which has to overcome an additional vis- 
cous shear. This effect is reinforced if the lateral walls are 
good heat conductors because temperatures per- 
turbations are more strongly damped in the neigh- 
bourhood of lateral walls. The latter requires an increase 
of the temperature gradient compared to the insulated 
lateral wall case. Stork and Mtiller [20] used a vessel with 
an upper 3 mm thick glass block and a lower 10 mm thick 
copper plate. They verified experimentally the onset of 
convection in small rectangular boxes with poorly con- 
ducting sidewalls. Their experimental values of Ra, gen- 
erally lie between the predicted values of the models for 
insulating and conducting sidewalls (with perfect heat 
conducting horizontal plates). 

More recently, Luijkx and Platten [21] reconsidered 
the case of an infinite channel of rectangular cross section, 
with rigid perfect conducting horizontal boundaries and 
two rigid, perfectly insulated lateral walls. Amplitude- 
equation calculations of Ra, lead to an asymptotic for- 
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mula for the critical Rayleigh number [22]. In this relation 
Ru, depends only on the large aspect ratio of the 
container, provided the small dimension is at least a few 
roll diameters long and is independent of thermal proper- 
ties of boundaries. 

Although there has been extensive theoretical and 
experimental work on the problem of convective 
threshold in boxes, a question still remains to be 
answered : the initiation of convection in a fluid confined 
in a rectangular vessel with horizontal and vertical walls 
of arbitrary thermal conductivities and widths. 

In further experimental studies, the following peculiar 
rectangular box will be used: the six vessel walls have 
finite thicknesses and thermal conductivities. Moreover, 
the sidewalls are not homogeneous and made up of two 
different materials. The goal of this paper is (i) to re- 
investigate the calculation of Ru, for an infinite liquid 
layer set between horizontal blocks having finite thermal 
conductivities, (ii) to roughly estimate the value of Ra, 
in the rectangular box described above. 

The paper is organized as follows. In the next section 
(Section 2) a horizontal liquid layer is considered, infi- 
nitely extended in the horizontal direction, bounded by 
two rigid plates of dfferent thicknesses and thermal con- 
ductivities. This problem is solved using the second vari- 
ant of Bubnov-Galerkin method. The chosen trial func- 
tion meets the boundary conditions and has sufficient 
freedom to look like the vertical component of the vel- 
ocity being approximated. Critical Rayleigh number 
(Ra,) and wavenumber (k,) are calculated. The main 
results are presented in this section. Then the temperature 
field at the threshold, just before the starting of the con- 
vection is computed in Section 3, using a finite element 
model. Computations are also performed for boxes with 
two thermal conducting and two mean thermal con- 
ducting vertical walls, and for boxes with four mean 
conducting vertical walls. Section 4 describes the exper- 
imental procedure : experimental and calculated results 
are compared. In Section 5, some conclusions are gath- 
ered. 

2. The analytical model 

2.1. Formulation 

A horizontal liquid layer of depth d is considered, 
infinitely extended in the horizontal direction. The liquid 
is bounded beneath and below by two rigid plates of 
different thicknesses d,, d, and different thermal con- 
ductivities i,, L, (the subscripts u and 1 stand, respectively, 
for the upper and the lower plates) (Fig. 1). The liquid 
obeys the Boussinescl conditions. 

V and 0 being, respectively, the velocity and the tem- 
perature perturbation from a uniform vertical tem- 

perature gradient, for the steady solution, it is assumed 
the following expressions : 

(V, 0) = b(z), 44, d4, @(4lf(X,Y). (1) 
The coordinates X, y, z, the time t, the velocity and 

the temperature T, are scaled by d, d2/v, v/d and 6T, 
respectively, where v is the kinematic viscosity and 6T 
the critical temperature difference. Applying a first order 
perturbation to a fluid which satisfies the Boussinesq 
approximation. the Navier-Stokes and energy equations 
lead to, respectively : 

(D2-k2)2~-RaOk2 = 0 (2) 

(D2-kZ)O+W = 0 (3) 

where Ra = c(g6Td3/v, K is the Rayleigh number, CI is the 
coefficient of thermal expansion of the liquid, g is the 
gravity, 6T is the temperature difference between the lim- 
iting horizontal surfaces, K is the thermal diffusivity and 
D = dldz. 

The mechanical boundary conditions correspond to 
rigid plates and to no slip conditions : 

z= +1/2 w=Dw=O. (4) 

For thermal boundary conditions, a constant and uni- 
form temperature is assumed over the outer surface of 
each plate (the surfaces in contact with the thermostated 
baths) : 

z = -(l/2+6,) 0 = 0, = 0 (5) 

z =(1/2+6,) 0 = 0” = 0 (6) 

where 6, = dJd (i = u, 1) 
The continuity condition for temperature and heat flux 

are written : 

z = -l/2 0 = 0, r,DO = DO, (7) 

z= +1/Z @I=@, r,DO=DO, (8) 

with ri = A/A, (i = u, l), I being the thermal conductivity 
of the fluid. 

2.2. Method of solution 

To solve equations (2)-(6), it is necessary to know 0, 
and DO,. In the upper plate, the steady temperature field 
is considered, which satisfies Laplace’s equation 
A@, = 0. A general solution is : 

0, = A, exp(kz) + B, exp( -kz). (9) 

Taking into account equations (6) and (8) leads to : 

k 
0, = A,[1 -exp(2k&)] exp - 

0 2 

r,DO, = A,[1 +exp(2k&)]kexp 5 
0 

. 

Combining equations (10) and (11) with : 

(10) 

(11) 
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Fig. 1. Boundaries in Rayleigh-BCnard convection. 

Bu= l r, tanh(k&) (12) 

it is finally obtained : 

onz = l/2 DO, = -O,kfi, 

with a similar equation on z = - l/2 : 
(13) 

DO, = O,kj?, with/$ = 
1 

r, tanh(k&) ’ 

The system of equations (2)-(8) is solved using the 
Bubnov-Galerkin method [l 11. Somewhat arbitrarily, 
but primarily for reasons of simplicity, of satisfaction of 
the boundary conditions and the velocity profile being 
approximated, the following function is chosen : 

w = E(1+cos2~z)+F(1-cos47cz). (15) 

Then substituting (15) into (2) and taking into account 
boundary conditions, the following general solution for 
0 is obtained : 

0 = EO, ??tFO, (16) 
with 

0, = 4,sh(kz)+<,ch(kz)+(k-*+y,‘cos2m) (17) 

O2 = &sh(kz)+<,ch(kz)+ (k* -y;’ cos4az) (18) 

(=- 

V.+PW; +%hsh; 

G 

G = (1 +P&)shk+ (Bu +D,)chk 

y, = k2+4n2, yz = k2+16rr2. 

Since w and 0 must satisfy equation (l), it is required 
that 

E(k4+y:cos2nz-RaO,k*) 

+F(k4-yy:cos4nz-RRaO,k*) = 0. (20) 

Multiplying (20) by (1 fcos2nz) and integrating with 
respect to z from -l/2 to + l/2, then doing the same 
with (1 - cos 47cz), a formula for the Rayleigh number is 
finally obtained : 

R a  =  -V4J, SZ,J4--2Z2J2) 

W,J4 4, 
[W, +Z,J4-2Z*J*)* 

* 
-4(Z,Z, -Z:)(J,Jd 4)l” 5 

W,J,-J3 
(21) 

with : 

Y: I, =k4f2, Z2=Z,=k4, Z4=k4+; 

J2 = J, = _ 
[ 

l+2:Eshk 
k y,y2 2 1 

J4 = -[l+E+;(Fysh;]. 

(22) 

The relation (21) provides the Rayleigh number of 
the fundamental instability mode as a function of five 
parameters: the wavenumber k, the conductivity ratios 
rU and Y,, the thickness ratios 6, and 6,. After fixing last 
four parameters, Ra is calculated as k varies from 0 to 
infinity. The critical value Ra, corresponds to the mini- 
mum of Ra. 

2.3. Results 

From equations (21) and (22) it is easily seen that Ra, 
is a symmetric function in terms of rU and r,, 6, and 6, i.e., 

Ra(r,, ri) = JW,, r,) (23) 

Ra(&, 6,) = Ra(& 6,) (24) 

thus, the threshold is unchanged if the thermal con- 
ductivities and/or the thicknesses are interchanged. In the 
following, when S (or r) is used without subscript, it 
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denotes that S = 6, = S, (or r = r, = r,). Some interesting 
special cases are first examined. 

2.3.1. Both blocks are perfect heat conductors 
(r x 4.1OP) 

Ra, and k, are independent of 6. Obviously, when the 
horizontal blocks are perfect conductors, their thickness 
has no influence on the threshold. The value Ra, = 1731 
is greater than the exact value Ra, = 1708 [4, 10, 111, but 
the difference is only 1.3%. 

2.3.2. Both blocks are perfect heat insulators 
(rz4.106) 

Likewise, whatever the thickness of blocks, there is a 
unique critical value for Ra,. The founded value 
Ra, = 734 is larger than the exact one, Ra, = 720 [lo, 
1 l] ; the difference reaches 1.9%. 

2.3.3. Influence of r and 6 with identical blocks 
Hurle et al. [9], Fkeid and Harris [3], Gershouni et al. 

[lo, 111, calculated Ra, for two semi infinite walls. Figure 
2 shows that our results agree with that of Gershouni 
et al. [l l] to 1% far S > 1. For the values S = 1 and 
10-l < r < lo*, which are of practical interest (these cor- 
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r 

respond to real boxes), the difference between the two 
results can reach 20%. Fork, the difference can be larger : 
it is 100% when S = 0.1 and r = 0.4 (Fig. 3). 

In conclusion, the approximation of precited authors 
is valuable only for limiting cases: r very small or very 
large, and of course, when the thickness of the two lim- 
iting horizontal plates is much larger than the depth of 
the layer ; the precise knowledge of Ra, and k, for a real 
case (6 < 10 and r finite) requires a special calculation. 
For instance, for a silicone oil (d = 1 cm and 1 = 0.16 W 
m K -‘) set between two blocks (di = 0.3 cm and li = 0.22 
W m K-‘) the calculation, for r = 1.375 and S = 0.3, 
gives Ra, = 1318 and k, = 2.60, whereas the approxi- 
mation previously cited provides Ra, = 1212 and 
k, = 2.07. The differences are respectively 9 and 26%. 

2.3.4. Injuence of r and 6 when the blocks are different. 
The variation of Ra, as a function of r, (or r,) for 

various r, (r,) is displayed in Figs. 4 and 5 for, respec- 
tively, S = 100 and for S = 0.1. As already pointed out 
by Gershouni et al. [lo, 111, Ra, (k;‘) decreases when 
the thermal conductivity of a bounding surface decreases. 
When the thermal conductivity of the first block 
decreases from infinity to zero, Rq decreases from 1731 

Fig. 2. Critical Rayleigh number, as a function of the ratio r = &uld/&l_L of the thermal conductivities for various thickness blocks. 
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Fig. 3. Critical wavenumber as a function of the ratio r = ,I,lquld/&,ocr of the thermal conductivities for various thickness blocks. 

to 1326 when the second block is a perfect thermal con- 
ductor, whereas it varies from 1326 to 734 when it is a 
perfect insulator. Variations of Ra, (k;‘) as a function 
of 6, (6,), for various 6, (6,) for fixed r, display the same 
behaviour (indeed equations and (12) and (14) show that 
ri and ai have similar part on b). 

3. Conductive state in a finite vessel 

To estimate the influence of the thermal properties of 
side walls on the onset of convection in a finite rec- 
tangular box, in view of new experiments to be developed 
in the future, the temperature field was calculated in the 
motionless liquid and in the vessel walls. The liquid under 
consideration was a silicon oil Rhodorsil 47VlOO (the 
liquid used in our experiments on Rayleigh-Btnard con- 
vection). The critical value, for an infinite layer, 
Ra, = 1318 corresponds to 6T, = 1.65”C. Calculations 
were performed for a vertical temperature difference 
6 T = 1.6”C. Such a study provided the temperature field 
near the threshold, and some insight into the influence of 

the confinement, the presence of inhomogeneities in the 
sidewalls. as well as the heat transfers. 

3.1. Vessels 

The vessel under study is a rectangular cavity 
(1 x 3 x 12 cm3), filled with silicon oil Rhodorsil 47VlOO 
(Prandtl number = 880 at 25°C) (Fig. 6). The walls are 
made of transparent polycarbonate, which has approxi- 
mately the same thermal conductivity (0.22 W m Km’) 
as the silicon oil (0.16 W m K-‘). Therefore, convection 
occurs in a box with moderate aspect ratios (r, = 12, 
l-V = 3) between moderately heat conducting walls 
(Y = 0.73) and finite horizontal blocks (S = 0.3). The out- 
side surfaces of blocks C and c’ are in contact respectively 
with streams of warm and cold water, maintained at fixed 
temperatures (Rayleigh-BCnard conditions). In each of 
the two small lateral walls A and A’, a horizontal par- 
allelepiped (5 x 0.5 x 0.6 cm’) made of copper is inset. 
The thickness of A and A’ is 1 cm, that of C and c’ is 0.3 
cm, whereas that of B and B’ (the other two lateral walls 
not shown in Fig. 6) is 1 cm. 
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Fig. 4. Critical Rayleigh number as a function of the relative thermal conductivity of one block, for various relative thermal conductivities 
of the second block. Relative thickness of each block: 6 = 100. ru = 0 4. lo-‘, 0 4. lV6, x 4. 1O-5, 0 4. 10m2, a 4. lo-‘, * 4, 
??4.10+‘, ??4. 10+3, A 4. 10+4, fE 4. 10+5,+ ref. [ll]. 

Two homogeneous vessels were also considered, with 
same geometrical characteristics, one made of copper, 
the other of polycarbonate. 

3.2. Physical model and hypothesis 

The steady-state thermal behaviour of the system is 
considered, just before the onset of convection, i.e. before 
the onset of the main Rayleigh-BCnard type cellular flow. 
The study is carried1 out with a three-dimensional (3-D) 
model, with appropriate geometry and boundary con- 
ditions. 

The whole system, that is the motionless oil contained 
in the box, the six polycarbonate vessel walls and the 
copper elements, is included in the formulation of the 
field problem. The thermal interaction between the poly- 
carbonate surface and the water flows is approximated 
by specifying a constant temperature over the upper and 
lower walls. 

The vertical sidewalls of the box are considered initially 
as adiabatic. A second series of calculations is then per- 
formed, using n,atural convection heat transfer 

coefficients between the sidewalls and the surrounding 
atmosphere. 

Because of the symmetry of geometry and physical 
loadings, the 3-D domain of the computation is taken to 
be only one quarter of the box. 

3.3. Finite element model 

The solution domain is classically divided into non- 
overlapping 20-node (quadratic interpolation) hexa- 
hedral finite elements and the continuous temperature 
field, within each element, expressed in terms of the 20 
unknown nodal values of the same element [23]. 

The convective heat transfer across the vertical bound- 
aries of interest is involved by using special g-node planar 
finite elements [24]. These elements have full com- 
patibility with the faces of the 246 20-node elements used 
to model the three media : oil, copper and polycarbonate. 

3.4. Calculations 

They were performed with use of the MEF/MOSAIC* 
code in three vessels : the box described above (I/E,), 
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Fig. 5. Critical Rayleigh number as a function of the relative thermal conductivity of one block, for various relative thermal conductivities 
of the second block. Relative thickness of each block: 6 = 0.1. rU = 0 4. lo-‘, 0 4. 10m6, x 4. lOV, 0 4. lo-‘, A 4. lo-‘, * 4, 
??4.10+‘,*4.10+3,A4.10+4, ??4.10+‘+ ref.[ll]. 

Fig. 6. Schematic section of the vessel. The fourteen black points in C, C’, A and A’ point out the thermocouples 

and, for comparison, two homogeneous boxes having 
the same size, but made up of polycarboxylate (VE,) or 
copper (VEJ. The mean temperature of the liquid was 
22.8”C. For each box, adiabatic or conducting sidewalls 
were considered. For the last case, the convective 

exchange coefficient ‘h’ between lateral walls and the 
atmosphere was given by the mean-value formula : 

h = 3.85(T,-- Tm)“4 (25) 

with T, and T,, respectively, the wall and the atmosphere 
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temperatures. Calculations were performed with 
T, = -3,25 or 47°C. 

3.5. Results 

Figures 7 and 8 show the isotherms in the central 
vertical longitudinal plane (plane LP) or in the central 
vertical transverse plane (plane TP) of the vessel. 

3.5.1. Adiabatic sidewalls (Fig. 7) 
The copper rods strongly disturb the distribution of 

isotherms in their neighbourhood (Fig. 7(a)) ; however 
the rod is essentially isothermal elsewhere. This non uni- 
form temperature gradient in the liquid is the origin of a 
convective roll existing close to wall A, even for small 6T. 
Figure 7(b) and (c): show the isotherms in VE, or VE,. 
In both cases the lateral walls weakly modify the tem- 
perature field. Let us define the thermal influence length 
(TIL) as the length, Imeasured from the vessel wall, where 
the temperature field is non uniform. This TIL is the 
same for VE, or VEp (0.6 cm), whereas it is 1.1 cm 
for our VE,,. In the transverse plane, the isotherms are 
obviously alike for the VEpc and VEp, as well as the TIL. 

In conclusion, the heterogeneous wall (VE,) disturbs 
the isotherms more than the homogeneous walls (VEc 

a -_-_...__ __ -- -- -_____ -_ E -_-- -- . ..-___ ----- -- 
BC 
__---_-- 

___ __- . .._.__... - 

~~~__ .._.. . -. .__.. 

I 1 

b 

and VE,), as expected. For the three cases, there is a 
decrease of 6T, along the wall A, in comparison to that 
in the central part of the box. The corresponding decrease 
of Ra is 33% for VE, and VE,, and only 15% for VE,. 
But, close to the vessel wall, the vertical temperature 
gradient is constant for VE, and VEp, whereas for VE,, 
it strongly varies in front of the polycarbonate and is 
about zero in front of the copper element (which is an 
isotherm surface to less than O.lC). That means that the 
walls have a stabilizing effect on the liquid in VE, and 
VE,, and a destabilizing one in VFW. 

It is noteworthy that the hypothesis of adiabaticity is 
a more or less justified approximation in a real case. 
Indeed it is approximately realized when the external 
temperature is equal to the average temperature of the 
fluid, but, necessarily in this case heat transfer occurs 
from outside to the fluid in the upper part of the vessel ; 
it is the reverse in the lower part. Herein hypothesis is 
justifiable since ST is small. 

3.5.2. Weak heat exchange with the surrounding 
atmosphere 

When the outside temperature is 25°C i.e. 2.2”C more 
than that of the liquid, it can be observed that the tem- 
perature field is not significantly modified in the liquid 

d 

e 

Fig. 7. Twenty isothemls for adiabatic sidewalls, in the transverse plane (a, b, c) and in the longitudinal plane (d, e, f), for the various 
vessels VEP, (a, d), VE, (b,e), VE, (c, f). T, = 22°C T, = 24.3”C (VE,, VIZ,) and q = 23.6”C (VE,). 
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a 

Fig. 8. Twenty isotherms for strong convective thermal exchange with the atmosphere (T, = 47”C), in the transverse plane (a, b) and 
in the longitudinal plane (c, d) for the vessels VE, (a, c) and VE, (b, d), with T, = 22°C and T, = 24.3% 

layer. The position of the isotherms is not modified in the 
copper box and is only weakly perturbed in the vessel 
wall, in the neighbourhood of the external surface. The 
vertical displacement of an isotherm is about 1.3 mm in 
V&, 1.5 mm in VE,,, whereas the isotherms remain at 
the same position in VE,. The TIL is slightly increased, 
it is 1.3 cm instead of 1.1 cm. In the transverse plane, the 
behaviours are similar. 

3.5.3. Strong heat exchange with the surrounding 
atmosphere (Fig. 8) 

The important heat transfers between the vessel and 
the surrounding atmosphere strongly displace, as 
expected, the isotherms in the neighbourhood of the walls 
and inside the walls themselves. The TIL reaches 2.5 cm 
in the real box and 2.1 cm in the polycarbonate vessel, 
but there is no apparent change for the copper container. 
It is similar in the transverse plane. Close to the walls, 
the temperature field is strongly non uniform, a con- 
vective roll along the wall can exist whereas in the central 
part of the vessel, the temperature gradient is constant. 
In this region the convective Benard rolls can appear only 
when the threshold is reached and if the aspect ratios I, 
and I, are large enough. 

The thermal influence of walls was considered, but 
the convective threshold also (overall) depends on their 
mechanical influence. Many calculations on the critical 
Rayleigh number in vessels with horizontal conducting 
surfaces have been performed by various authors with 
‘slippery’ and impermeable or ‘non slippery’ sidewalls. 
The second condition, the only realistic one, exhibits a 
noticeable increase in comparison to the first one, 
exhibiting the importance of mechanical influence of the 
lateral confinement. To determine the critical Rayleigh 

number in our vessel, it is necessary to conduct exper- 
iments. 

4. Experiments 

4.1. Experimental procedures 

The vessel is described above. The temperatures on 
the faces of C and c’, in contact with the liquid under 
consideration and in the copper parts of A and A’, were 
measured with fourteen thermocouples (diameter = 0.5 
mm) (Fig. 6). Silicon oils, of viscosities 5 and 10 Stokes 
at 25°C were used for the determination of Ra,. Indeed, 
increasing v increases the critical temperature difference 
6T,, and decreases the uncertainty in Ra,. 

The flows were visualized in vertical and horizontal 
planes by using a plane laser beam and small aluminium 
flakes dispersed in the liquid. For the determination of the 
critical temperature difference, two independent methods 
were used: (i) visualisation of the initial convection by 
means of the aluminium flakes, made visible when illumi- 
nated by the laser beam. They were observed with a 
microscope using a black background. A displacement 
of the order of 0.5 pm s-’ could be detected ; (ii) recording 
the temperature as a function of time. The onset of con- 
vection corresponded to a kink in the temperature vs. 
time plot. 

Experiments were performed with a slow heating rate 
(1C per hour) and for the adiabatic case, i.e., for a 
mean liquid temperature equal to that of the surrounding 
atmosphere (23°C). 
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4.1.1. Estimation of tprror in Ra, 
The tl and K quantities are given in the manufacturer 

catalogue (Rhone Poulenc Rhodorsil Silicones). The vis- 
cosity is calculated at the average temperature 
T,,, = (T, + T,,)/2 (T, and T, are the temperatures, respec- 
tively, at the lower and the upper surfaces of the liquid 
layer). The errors in cc, v and K are assumed to be, respec- 
tively, 1, 0.5 and 1%. The error in the depth layer is 
0.5%. After calibration of the thermocouples, the error 
in the critical temperature difference was estimated to 
+O.O5”C. Using high viscosity oils increases 6T, and 
decreases the relative uncertainty : it was about 6. 10m3 
and 3. lo-’ for oils of 5 and 10 Stokes, respectively. The 
major cause of error in the measurement of Ra, is the 
sensitivity in the detection of the threshold. After numer- 
ous tries, it was estimated to be to f O.l"C. Thus, the 
uncertainty in the critical Rayleigh number may contain 
errors up to a maximum of 6%. This value must be 
considered as a maximum because the various errors may 
at least partly compensate each other. 

4.2. Results 

The two methods mentioned above provided con- 
sistent results for both oils in almost adiabatic lateral 
wall case. Results are tabulated in Table 1. For each 
temperature five measurements were performed. The cor- 
responding mean Ra, is 1420, which is close to the value 
calculated for an infinite layer (Ra, = 1312). The differ- 
ence (8.2%) is larger than the estimated maximum uncer- 
tainty (6%). 

It is noteworthy that the critical Rayleigh number in a 
box is larger than in an infinite layer. This is in agreement 
with the results reported in the Introduction, but for 
different vessels, i.e. the two limiting horizontal surfaces 
were assumed to be perfectly conducting whereas, in the 
box under consideration, they have a finite thermal con- 
ductivity. If the Catton [17, 181 results are transposed to 
this case, the variation of Ra, is of the order of 67% ; 
on the other hand, the formula of Walden et al. [25], 

Table 1 
Critical Rayleigh number and critical temperature difference 
measured for various mean temperatures T,,, of the liquid and 
of the atmosphere for two silicone oils 

Oil T,,, = T, 6T, 
(Stokes) (“C) (“C) Ra, 

5 

10 

20 9.1 1416 
25 8.65 1431 
21 8.35 1405 
20 19.25 1422 
25 17.2 1412 
30 15.75 1432 

appropriate for a rectangular box of aspect ratios 10 x 5 
with horizontal heat conducting plates, predicts a vari- 
ation of about 5% for Ra,. All these results, although 
established for different vessels, are in agreement with 
our measurements. 

5. Conclusion 

The influence of the thermal conductivities and thick- 
nesses of horizontal plates in a box, on Ra, and k,, is 
important for small thicknesses and intermediate con- 
ductivities. The influence of lateral walls in a finite box is 
noticeable for small aspect ratios, as pointed out by 
Catton, but for different thermal and geometrical con- 
ditions. In fact it is very important for very small aspect 
ratios only. That seems to be a quite general result. The 
sidewalls have a double effect : (i) they increase the 6T in 
the influence zone and they damp the thermal pertur- 

bations. As shown by many authors, this effect is more 
pronounced with conducting walls than with isolated 
ones ; (ii) they damp the velocity perturbations. The effect 
of the lateral walls is doubly stabilizing, and thus follows 
an increase in Ra,. 
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